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Exact theory of nonlinear p-polarized optical waves

A. D. Boardman
Department of Physics. Unicersuty of Salford, Salford M5 4WT, United Kingdom
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T. Twardowski
Department of Physics. University of Salford, Salford M5 4WT, United Kingdom

E. M. Wright
Optical Sciences Center, University of Arizona, Tuscon, Arizona 85721
(Received 30 June 1986)

Exact calculations are presented of the properties of nonlinear p-polarized waves propagating
along the plane boundary between a nonabsorbing, optically self-focusing, nonlinear dielectric and a
nonabsorbing positive, or negative, linear dielectric. A nonlinear polanzation i1s used that anses
from a number of causes for both Kerr-like and non-Kerr-like saturating media. In the results given
here the linear dielectric is 2 metal, if negative, and is'glass if positive. It is found that the variation
of the power flow along the guiding surface with effective index, for negative linear dielectrics, will
always exhibit a maximum. For data corresponding to copper bounded by, for instance, a seif-
focusing nonlinear semiconductor, access to this maximum involves such a large change in the re-
fractive index of the nonlinear material, that it is of no practical interest. In the visible better
matching of the metal to a nonlinear material can, in principle, be achieved so this maximum may
be reached for fairly modest nonlinear changes in the refractive index. A detailed comparison 1s
made with approximations that are based upon a curtailed form of nonlinearity. At low frequencies,
for modest nonlinear changes in the refractive index, the dependence of the power flow curve upon
the effective guide index is fairly close to several of the carlier published theories. These include a
well-known approximation in which the transverse field component is assumed to be dominant. The
neighborhood of the maximum, and beyond, becomes accessible at higher operating frequencies and
significant differences from earlier approximations may then occur. For positive linear dielectrics
the exact theory shows a strong similarity to many more approximate ones, as expected, but the
difference between the TM and TE surface wave behavior cannot be discounted. We present several
sample calculations of the power flow together with detailed plots of the field components, the mag-
nitude of the nonlinearity, the effect of nonlinearity, and the behavior of the first integral.

FEBRUARY 1, 1987

INTRODUCTION

During the recent upsurge of interest in nonlinear opti-
cal wave propagation in planar'~7 and optical fiber®
structures there has been a heavy emphasis on TE waves.
For these, confidence can be placed in the form of non-
linear dielectric tensors used because, as was first shown a
long time ago®®'° the TE nonlinear differential equation
for the electric field component has an elegant and exact
analytical solution. This fact enables many benchmarks
to be developed of both an analytical and numerical kind
and encourages detailed solutions. For TM waves, howev-
er, the situation is quite different. For these types of non-
linear waves, as has been discussed recently,!! a number of
approximations'' ~2* have been employed that limit the
applicability of the results, quite often in a spectacular
manner. This development has taken place against a

38

background that contains a fairly old exact analytical cal-
culation of the first integral of the guided-wave TM non-
linear equations.’® The latter was obscurely presented,
however, and in a context that is difficult to relate to in
optics. It has, therefore, remained unexploited in the
modern literature. The discussion of the relative impor-
tance of TM waves and whether their behavior can, in
certain circumstances, be trivially inferred from the
known behavior of TE waves, will be deferred until later
in this article.

THEORY
For an isotropic material the nonlinear polarization can
be expressed in terms of the fourth-rank susceptibility ten-
sor X,y which has 21 nonzero elements of which only

three are independent:

1159 ©1987 The American Physical Society
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Fresnel-like behavior of guided waves
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The retlection and transmission of thin-film guided waves incident at variable angles upon a variety of transverse
discontinuities are analyzed. A thin film bounded by semi-infinite media is modeled by a thin film bounded by
finite media. terminated at shorting planes situated parallel to and a long distance from the film surfaces. The
resuits obtained with this modei are checked against previous calculations for normal incidence ooto a waveguide—
air endface. For nonnormal incidence upon the interface between two waveguides, various interesting phenomena
such as guided-wave equivalents of Brewster’s angle, multiple cutoff angies for both guided waves arnd radiation
fieids, and intermode conversion are investigated numerically.

1. INTRODUCTION

The reflection and transmission characteristics of guided
waves incident upon the interface between two waveguides
or the endface of a waveguide are problems of continuing
interest in guided-wave technology. Much of the previous
work has centered on understanding (1) oscillation in semi-
conductor lasers!-7 and their radiation patterns and (2) butt
coupling of waveguides to other waveguides and to fibers,3¢
both of which involve normal incidence upon the interface.
With the recent interest in bistability and similar all-optical
operations in integrated-optics structures, the guided-wave
endface reflectivity determines the finesse of a guided-wave
cavity and hence the critical power required for switch-
ing.\%! There are also other interesting questions for non-
normal guided-wave incidence, specifically whether there
are guided-wave equivalents of Brewster phenomena and
whether new effects that are unique to guided waves occur.
We address these questions by calculating, for a number of
cases, the reflection and transmission coefficients of the
incident guided-wave mode, the fraction of power converted
into other guided-wave modes, and the fraction of energy
radiated out of the guided modes.

Similar guided-wave interface problems have been treated
for normal incidence in the past*"-12-2 by using a variety of
analytical techniques. For example, for small transverse
discontinuities, a simple and effective approximation has
been derived by Marcuse.'? For arbitrarily large transverse
discontinuities for which appreciable coupling takes place to
all of the guided waves of the waveguide and to the continu-
ous radiation spectrum, the boundary conditions along the
transverse interface yield a set of integral equations. One
approximation is to solve thess equations by the convention-
al Neumann series.® Another is to discretize the continuous
radiation spectrum, for example, by expanding it in terms of
Laguerre functions’!!® or Hermite Gaussian functions?!
with an adjustable width parameter. The radiation-wave
continuum can also be discretized by introducing bound-
aries parallel to the film surface to limit the physical system

0740-3232/87/112120-13$02.00

: in one dimension.!” For such a discretized mode spectryn
there are several ways to solve this set of infinite liney
equations. For ezample, the variational techniquei:ia
and the least-squares boundary-residual’ method have beep
used.

[n this paper we use both a boundary-residual method and
a point-matching method, together with a discretized mods
spectrum, to examine the reflection and mode conversion of
TE and TM guided waves incident (1) at 90° upon the
endface of a waveguide and (2) at variable angles of ing.
dence upon an interface between two waveguides. [n order
to verify the validity of this model, comparison is made firt
with previous calculations in the limited nuinber of cases
which it is possible. For example, for TE modes aormally
incident upon the waveguide—-air interface, we obtained be-
havior similar to that reported by Pudensi et al.! and [ke-
gami.*? using variational techniques for the identical wave-
guide system. However. for the TM case, the conversion
coefficients into other guided waves and the radiation losses
on reflection were found to be larger than reported in those
two papers. We further examine the model by verifying
that the results are only weakly depeadent on the distance
between the shorting planes.

In subsequent calculations we investigate a number of
similarities between plane-wave and guided-wave reflection
phenomena. These include Brewster’s angle, reflectivity
minima for radiation through endfaces, and Fresnel phe-
nomena, including guided-wave and radiation field cutoffs.

2. THEORY

The physical system of interest is shown in Fig. 1(a), and the
model that we choose to approzimate it is shown in Fig. 1(b).
As discussed before, the principal difference between the
two is the introduction of shorting planes above (z = d) and
below (z = —d} the thin-film boundaries. For guiding to be
possible, the film index n; is chosen to be larger than that of
the cladding (n.) and substrate (n,), and the (ilm thickness s

0 1987 Optical Socisty of America
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